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‘the terrestrial salamander Plethodon’

EVADA LAKES OF CALI-

_The apparem,allotopic distribution of frogs
and fish has been interpreted as a case of elim-
ination of native frog populations due to pre-
dation by introduced fishes (Grinnell and Stor-
er, 1924; Walker, 1946; Hayes and Jennings,
1986). The hundreds of high Sierra Nevada
lakes that now contain trout and charr may have
previously supported substantial populations of
frogs. Hayes and Jennings (1986) argued that
predation by introduced fishes is the most com-
pelling hypothesis explaining the apparent de-
clines that have occurred among most of the
native ramd frogs in western North America.

The present study tests the hypothesis that
populations of two native frogs, R. muscosa and
Pseudacris (=Hyla) regilla, and introduced fishes
do not co-occur in high Sierra Nevada lakes.

- The study also assesses the importance of lake

depth in determining the occurrence of these
animals.

Methods.—Data were obtained for 67 lakes in

. the Tablelands and Ansel/Blossom lakes areas

of Sequoia National Park and Kings Canyon
National Park, both in California. These two
areas were selected because both frogs and fish-
es occur in-each area, numerous lakes occur in’
each area, and both areas lie within a 1 d hike
from a road. The two areas, which together are.
approx. 18 km? in total area, lie 23 km apart in
the watersheds of the Kings and Kaweah rivers.
Forty-nine of the lakes surveyed appear on U.S.

' Geological Survey 15 min quadrangles (Mineral

King, Triple-Divide Peak); the remainder are
small and, in some cases, ephemeral. The pre-
cise locations and other data for all lakes are on
file at Headquarters, Sequoia and Kings Canyon
National Parks, Three Rivers, California. i
Surveyed lakes ranged from approx. 291ﬂ

3430 m in elevation, from approx. 0.004~7 h
in area, and from 0.3-37 m in maximum depth.
Rooted vegetation was generally sparse and re-
stricted to water shallower than 0.5 m deep.
Shorelines were typically rocky, surrounded by
subalpine forest or alpine fell-fields plant com-
munities of Munz and Keck (1965). Fingerling

. rainbow trout (Salino gairdneri), brook charr

(Salvelinus fontinalis), and possibly golden trout
(Salmo aguabonita) have been introduced to sev-
eral lakes in each area at various times since
about 1930, and possibly earlier (Meyer, 1965;
Christenson; 1977; Zardus et al., 1977). Anuran
amphlblans observed in each area were the
mountain yellow-legged frog (R. muscosa) and
the Pacific treefrog (P. [=Hyla) regilla). Bufo bo-
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in the $tudy areas has been established by stock-
ing, which has been repeated in hundreds of
lakes in the Sierra Nevada for over at least four
decades (Christenson, 1977; Zardus et al., 1977).

The exclusion of frog populations from lakes
containing introduced salmonids may be due to
predation on tadpoles and frogs-by the intro-
duced fishes. Salmo spp. and Salvelinus spp. are
almost exclusively insectivorous or carnivorous
(Moyle, 1976) and will strike tadpoles of R. mus-
cosa when they are placed in a lake (pers. obs.).
Cory (1963) reported that larval and post-meta-
morphic R. muscosa show a distinctive escape
behavior in waters containing fish but lack such
behavior in waters devoid of fish. Tadpoles and
frogs have few refuges from fishes in high Sierra
Nevada lakes that are deep enough to support
fish because during most of the year these lakes
lack vegetative cover, and large tributary streams
are lacking. Moreover, in the case of R. muscosa,
tadpoles at high elevation always overwinter at
least once, during which time they seek the
warmer, deeper water beneath the ice cover
(Bradford, 1984).

The impact of introduced salmonids on R.
muscosa populations may have been substantial.
Prior to stocking of high Sierra Nevada lakes
and streams with trout and charr, virtually all
high Sierran lakes were barren of fish (Hubbs
and Wallis, 1948; Moyle, 1976; Christenson,
1977). Although several native salmonids in-
habited the west slope of the Sierra Nevada,
steep canyon gradients prevented colonization
of high elevation lakes and streams as Pleisto-
cene glaciers receded, except for much of the
upper Kern River basin that was not subject to
glaciation (Schreck and Behnke, 1971; Moyle,
1976; Christenson, 1977). Prior to stocking,
however, populations of R. muscosa may have
been present in most lakes and streams of the
high Sierra Nevada. Evidence for this assertion
is that the historic range of R. muscosa is pri-
marily the Sierra Nevada at 1400-3700 m el-
evation (Zweifel, 1955) and R. muscosa popula-
tions currently occur in-a large proportion of
the lakes deeper than 1.5 m that lack fish (pres-
ent study; pers. obs.). In many of these lakes,
R. muscosa are exceedingly abundant (Grinnell
and Storer, 1924; Bradford, 1983, 1984). In

-some cases hundreds of frogs and hundreds of

tadpoles can be counted along a 100 m section
of shoreline (Bradford, 1984). As a result of
stocking with salmonids, about 60% of the ap-
prox. 3000 lakes in the Sierra'Nevada are now

inhabited by fish, primarily rainbow trout, gold-
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Fig. 1. Occurrence of introduced fishes (rainbow
trout, Salmo gairdneri, or brook charr, Salvelinus fon-
tinalis) and tadpoles of the mountain yellow-legged
frog (Rana muscosa) and Pacific treefrog (Pseudacris
[=Hyla] regilla), as a function of maximum depth in
67 high Sierra Nevada lakes. Tadpoles did not coexist
with trout or charr in any lakes, whereas R. muscosa
and P. regilla tadpoles coexisted with each other in
seven lakes.

reas may be present but was not observed during
the lake survey or other visits.

Each lake was examined at least once for the
presence of fish and tadpoles during the sum-
mers of 1978 or 1979. The occurrence of fish
was determined by visual observation from shore
or boat of individual fish or signs of surface
feeding. These determinations were corrobo-
rated by data in recent National Park Service
surveys(Zardusetal., 1977), general knowledge
of backcountry rangers, and/or the presence
or absence of signs of fishermen. The presence
of tadpoles was assumed to represent the exis-
tence of a reproductively viable population of
frogs in a lake. During the summer, tadpoles of
both R. muscosa and P. regilla occur almost en-
tirely in shallow water near shore (Bradford,
1984) and are easily detected by searching the
shoreline, even in the deepest lakes. The entire
shoreline was searched in all but the largest
lakes, in which case at least one-third of the
shoreline was searched.
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